A.1.a. **USER REQUIREMENTS**

The general requirements are to:

- introduce some additional data items to the CS in respect of Trade Effluent DPIDs;
- to improve the linkage between DPIDs and meters;
- to amend the Trade Effluent Volume calculations to use appropriate water meter readings;
- To amend the sewerage calculations where they currently use NDA, to take account of the linkage between DPIDs and meters;
- To introduce the new settlement calculations so that all settlement runs in respect of any period starting on or after a specified date, use the new data and the revised settlement calculations. The specified date to be configurable, but will always be chosen so that it occurs on 1st April. There will never be a need to ‘mix’ the old and the new calculations within a single settlement run, either monthly or RF.
- To record private water and private effluent meters in the Central Systems in order to reflect linkages with DPIDs and enable calculation of Trade Effluent volumes.

UR 1. The CS will continue to support both the new settlement calculations and the old settlement calculations. The new calculations will be introduced with respect to settlement period start dates after a configurable date, to be set as described in UR17, except for the application of the vacancy correction to the TE Availability Charge and the TE Minimum Charge (as per UR 9).

UR 2. The new settlement methods will apply to both monthly and RF calculations.

UR 3. New data items

UR 3.1. There should be a new “treatment” attribute associated with a meter which indicates that a meter is one of:

- SWWater
- PrivateWater
- PrivateEffluent
- TankeredEffluent

with

- “SWWater” being referred to as “non-private”; and
- “PrivateWater”, “PrivateEffluent” and “TankeredEffluent” all being referred to as “private”.

UR 3.2. The treatment attribute of a meter is constant over time. A meter’s treatment attribute cannot be changed. Hence, any erroneous labelling of a meter will require the relevant user to remove the meter record and replace it, using existing processes.

UR 3.3. All meters (including “PrivateEffluent” and “TankeredEffluent” meters) will continue to be associated with the water SPID.

UR 3.4. All meters which are visible to the market (meterType = 1, “physical meters”, including for the avoidance of doubt domestic meters and Pseudo meters) must have the Meter Treatment attribute set. It is permissible for ‘subtraction’ meters, (an internal CS construct, meterType=2) used as part of meter network to not have a value for this attribute.

UR 3.5. The validation for the meter treatment attribute should include database checking.

UR 3.6. There will be a new date dependent data item; \(P_{\text{cd}}\) associated with every DPID. It will be expressed as a percentage to two decimal places. This value can vary on a daily basis. Input values will be validated by the schema to satisfy \(0 \leq P_{\text{cd}} \leq 100\).

UR 3.7. There will be a new data item \(F_{\text{A}}\) associated with every DPID. Input
values will be validated by the schema to take integer non negative values. This value can vary on a daily basis.

UR 3.8. There will be a new data item TETreatment (TET) with possible values of “Secondary”, “Primary” or “Sub-Primary”. The TETreatment attribute of a DPID is constant over time and cannot be changed. Hence, any erroneous submission by the relevant Party will need to be corrected via the removal and replacement of the particular DPID, using existing processes. Database validation should also be employed for this data item.

UR 4. Existing Data Update

UR 4.1. All existing market visible meters (meterType=1) will have their treatment attribute set to “SWWater”.

UR 4.2. All existing DPIDs will have the values of PA_{TD} and FA_{TD} set to 0 for their entire history.

UR 4.3. All existing DPIDs will have the values of TE Treatment set to “Secondary”, except where ‘Primary’ or ‘Sub-Primary’ is explicitly identified in a csv file to be provided by SW, which should be used to update the CS via a suitable script.

UR 5. Changes to data flows

UR 5.1. The T004.0 message which creates a meter should contain an optional extra field D3022 – MeterTreatment which will allow the treatment attribute to be set. The default, if the attribute is not explicitly set in the flow, will be that the meter is “SWWater”.

UR 5.2. There will be no change to the structure of the T004.3 Pseudo Meter flow. All meters created with the T004.3 flow will take the default “SWWater” attribute.

UR 5.3. The corresponding outbound T004.1 messages to LPs will contain the treatment attribute, whether or not the status is explicitly set on the inbound T004.0 flow or T004.3 flow.

UR 5.4. There will be additional validation on the T004.0 message that the D3007 Non-Return to Sewer Allowance must be between 0 and 100 (inclusive) and is set to 0 for PrivateEffluent and TankeredEffluent meters, since such meters measure only TE and not domestic sewerage. If an RTS of greater than 0 is submitted for PrivateEffluent or TankeredEffluent meters, or if an RTS outside of the above limits is submitted, a T009 message should be returned to SW (using the T9 Helper), with error code HK. Database validation should also be used to ensure both of the above criteria.

UR 5.5. There will be additional validation on the T004.0 message that:

- The D3002 Chargeable Meter size is set to 0 for all private meters i.e. PrivateWater, PrivateEffluent and TankeredEffluent meters, since these meters should not attract water standing charges. If a non-zero value is submitted for any such meter, a T009 message should be returned to SW (using the T9 Helper) with error code HL.

- The D3005 Sewerage Chargeable Meter Size is set to 0 for all private effluent meters i.e. PrivateEffluent and TankeredEffluent meters, since these meters should not attract sewerage standing charges. If a non-zero value is submitted for either item, a T009 message should be returned (using the T9 Helper) with error code HL.

- Database validation should also be used to ensure both these requirements.

UR 5.6. The same validation in respect of the above two sub-URs for Return to Sewer Allowance, Chargeable Meter Size and Sewerage Chargeable Meter Size should be applied to the T014.0 transaction. Furthermore, a T009 should be sent (via the use of the T9 Helper) with error code [XX] if there is an attempt in a T014.0 transaction to update the D3007 Non-Return to Sewer Allowance of either an SWWater meter or a PrivateWater meter to zero if there is a DPID-Meter association for that meter effective from any date on or after the date on which the RTS is to be set to zero.
UR 5.7. The T017 flow which swaps a meter should include validation which only allows meters to be swapped for a meter with the same treatment attribute – i.e. SWWater meters for SWWater meters, PrivateWater meters for PrivateWater meters etc. If the meter treatment is not the same for the old and new meter, the T017 should be rejected and a T009 returned (using the T9 Helper), with error code HM.

UR 5.8. Pcent Allowance will be initially set using the standard DPID T021.0/T021.1 flows. The Pcent Allowance data item is required. Suggested fieldname D6012 – Pcent Allowance. If the field is not duly completed, the transaction will be rejected by the Schema.

UR 5.9. The Fixed Allowance will be initially set using the standard DPID T021.0/T021.1 flows. The data item is required. D6013 – Fixed Allowance. If the field is not duly completed, the transaction will be rejected by the Schema.

UR 5.10. The TETreatment will be initially set using the standard DPID T021.0/T021.1 flows. The data item is required. D6011 – TETreatment. If the field is not duly completed, the transaction will be rejected by the Schema.

UR 5.11. The Pcent Allowance will be updatable using the standard DPID T027.0/T027.1 flows. The field will be optional on this flow. The existing T027.0/T027.1 crystallisation logic should be extended to incorporate the Pcent Allowance and Fixed Allowance values.

UR 5.12. The Fixed Allowance will be updatable using the standard DPID T027.0/T027.1 flows. The field will be optional on this flow. The existing T027.0/T027.1 crystallisation logic should be extended to incorporate the Pcent Allowance and Fixed Allowance values.

UR 5.13. Meter readings in respect of meters which have the attribute “Private Effluent” or “Tankered Effluent” will be provided by the sewerage services LP, rather than the water services LP, as defined in the URs for CMACPx114. In this case, the T005.2 will not be echoed on to the Water Services LP.

UR 6. Meter Association. There already exists some capability in the CS to associate (T023.0/T023.1) and de-associate (T024.0/T024.1) TE DPIDs with meters. This capability of this transaction should be verified and expanded as necessary to meet the user requirements below.

UR 6.1. Not used but retained for consistency with UR numbering in the CP.

UR 6.2. In particular, it is necessary for this association to be a many to many association.

UR 6.2.1. Each DPID should be able to be associated with one or more meters; and each meter should be able to be associated with one or more DPIDs. This association can be described by a variable MDASSOC_{Ktd}, which will take the value 1 when there is an association and the value 0 when there is not an association. Each meter-DPID association will also have a related value Meter-DPID Volume (MDVol_{Ktd}). MDVol_{Ktd} will be expressed as a percentage to 2 decimal places which must be greater than or equal to 0% but less than or equal to 100%. When there is no association between a meter and a DPID, the value of MDVol_{Ktd} will be 0. This value represents the percentage of a specific meter’s water which will be associated with a DPID. This percentage can be updated on a daily basis. This value should be carried on the T023.0/T023.1 transactions as a mandatory parameter and any failure to include a suitable percentage value should cause the transaction to be rejected by the Schema (Suggested field name D3024 - MDVol). The design of the system should not require there to be an explicit value for MDASSOC_{Ktd} and MDVol_{Ktd} for every possible meter-DPID pairing; but must include explicit values for when there is a pairing. In the absence of an explicit value both MDASSOC_{Ktd} and MDVol_{Ktd} should be taken as being 0.

UR 6.2.2. The database should enforce both the permissible values of MDVol and the relationship between MDVol and MDASSOC.

UR 6.3. The DPID – meter association should seamlessly survive meter swaps.

UR 6.4. Not used but retained for consistency with CP.
UR 6.5. MDVol should be updatable by transaction. This should be done with the T023.0/T023.1 transaction.

UR 6.6. Updates to MDVol should be crystallised. In respect of a specific meter-DPID association, an MDVol update strictly prior to the most recent MDVol update should be prevented. If such an update is submitted, it should be rejected and a suitable T009 provided, with an appropriate error code.

UR 7. LVI functionality

UR 7.1. The DPID Details and DPID History screens will additionally display the PcentAllowance and FixedAllowance against each DPID and the DPID history, the TE Treatment and the Meter Associations (along with the MDVol values for each meter) and history thereof. The TETreatment should be presented on the screens above the CDV.

UR 7.2. The Meter Details screens will additionally show the meter Treatment type (SWWater, PrivateWater etc)

UR 7.3. Links should be established from the associated meters on the DPID screens to the relevant Meter Details screens and for those above pages that may be viewed by Trading Parties. The current SPID View csv file should be amended to include; the new DPID data, new meter data and Meter-DPID associations (current and historic).

UR 7.4. Not used but UR number to be retained for consistency with the CP.

UR 7.5. Changes will be made as necessary to the LVI screens to allow the updated transactions above to be submitted;

UR 7.5.1. The T4 screens to include a field for Meter Treatment (which should be presented near the top of the screen), including radio buttons for the Meter Treatment types, with a default of SWWater.

UR 7.5.2. The T21 screens to include fields for Pcent Allowance, Fixed Allowance and TET (to be presented near the top of the screen, with no default and a need for one choice to be selected; radio buttons should be used) and suitable field sizes and configurations for numeric items, with no default and guidance as to the nature of the number (e.g. %, or cubic meters). If no selection is made, an appropriate error message should be displayed. The T27 screens should be similarly amended, but without the TETreatment item.

UR 7.5.3. The T23 screens to include a field for MDVol, with a suitable field size, no default and guidance as to the nature of the number. If no selection is made, an appropriate error message should be displayed.

UR 8. Trade Effluent Settlement – volumetric calculation.

UR 8.1. From the settlement calculation cutover date, trade effluent volumes should now be derived from the associated meters (taking account on a day by day basis which meters are associated.

UR 8.2. Specifically, the Trade effluent volume calculation should be as follows:

UR 8.2.1.

For a T17 meter chain K, define the variable TEM_k as:

$TEM_k = 1$, if the meter chain is of either PrivateEffluent or TankeredEffluent;

$TEM_k = 0$, if the meter chain is either SWWater or Private Water.

And then define the term:
UR 8.2.2. The sum is over all the meters K associated with the Trade Effluent DPID T on the day d, and the subtraction of NDA_{Td} is specifically the NDA associated with that Trade Effluent DPID T.

UR 8.2.3. This sum is over all meters, i.e. both private and non-private meters

UR 8.2.4. The calculation to be carried out after the subtraction of meter network volumes associated with each meter K.

UR 9. TE non volumetric charges (availability charge) and minimum charge should be stopped during vacancy, but not during temporary disconnection – i.e. in a similar manner to other non volumetric charges. For the availability charge, the approach to deliver this is to modify the charge calculation, as identified in UR 13.6.4. For the minimum charge, the approach should be similar to that used for SGES; i.e. TE charges should be disregarded during vacancy and any day for which the SPID is vacant should be disregarded for the number of days in charge.

UR 10. There are related changes to the water volumetric calculations. Private meters should not be taken into account. This will affect all the computations of total water volume, for both monthly and annual calculations, and for both the direct computation of volume, and the computation of volume leading to the computation of prices (AWAs and EWAs). This affects the volumetric calculation for water as follows:

UR 10.1.1. For a T17 meter chain K, define the variable PVT_K as

\[PVT_K = 0, \text{ if the meter chain is SWWater (non-private), or} \]
\[PVT_K = 1, \text{ if the meter chain is PrivateWater, PrivateEffluent or TankeredEffluent (private)} \]

The existing term Water Meter Chargeable (WMC_{Kd}) in equation 2.3.5 in CSD0207 will be renamed MeterActive (MA_{Kd}) and in all subsequent equations where it appears. Thus 2.3.5 will remain, with the following criteria for MA_{Kd}:

\[MA_{Kd} = 1 ; \text{ if } D^C_{Kd} <= d < D^U_{Kd}; \]
\[MA_{Kd} = 0 ; \text{ otherwise.} \]

Replace the existing paragraphs 2.3.6 and 2.3.7 with:

Define the SPID Scottish Water Meter Active ($SSWMA_d$)

\[SSWMA_d = \max_K (MA_{Kd} \times (1 - PVT_K)) \]

and the Vacancy Adjusted SPID Scottish Water Meter Active ($VASSWMA_d$) as

\[VASSWMA_d = (SSWMA_d) \times (1-VAC_d) \]

Then the Total Scottish Water Meter Active Days ($TSWMAD$) is

\[TSWMAD = \sum_d VASSWMA_d \]

And the YP is

\[YP = \frac{TSWMAD}{DIY} \]
With this explicit change (to include \(PVT_k \) in the Yearly Proportion) – calculations for Meter Free Allocation, Proportional Free allocation and Proportional Capacity Volume Threshold should all work as per the current code, as they all contain the term WCMS (Water Chargeable Meter Size) – being zero for all Private Meters.

Summations of water volumes required to calculate AWA in the AWA calculation, and any equivalents in the EWA calculation require to have the term \((1-PVT_k) \) explicitly included. Relevant equations include:

- Actual Yearly Volume (AYV) (existing 2.3.39)
- Uncapped Premium Annual Volume (UPAV) (2.3.36) *(note – not strictly necessary, but good for consistency for this term)*
- LUVA Annual Volume (LAV) – (equation 2.3.34)

Additionally, calculations of water for output or for the calculation of charges (where multiplied by a price such as AWA or EWA) also need to have an explicit \((1-PVT_k) \) term included. An example is:

\[
U_{DMC_{Kd}} = AWA \times DDV_{Kd} \times (1 - PVT_K) \times (1 - WS3_d - S29e_d)
\]

UR 10.1.2. Included above

UR 10.1.3. Included above

UR 10.1.4. Water volumes derived from Rateable Values are deemed to be “non-private”.

UR 10.1.5. The sums for all other water volumes need to be correspondingly adjusted.

UR 10.1.6. For the avoidance of doubt, no changes need to be made to the calculation of any of the allowances – such as free allocation. These are dealt with by ensuring that the chargeable meter size is set to 0, as appropriate.

UR 11. For the avoidance of doubt, there are no related changes to the water non-volumetric calculations. These are dealt with by ensuring that the chargeable meter size is set to 0, as appropriate. For Sewerage meter based charges, SWWater and PrivateWater meters with RTS greater than zero and with an association to the relevant DPID (albeit with MDVol possibly being zero) will be taken account of.

UR 12. Sewerage volumetric calculation will take account of all meters, both private and non-private meters. Additionally, there will be changes where the calculation involves NDA. This will affect all the computations of total sewerage volume, for both monthly and annual calculations, and for both the direct computation of volume, and the computation of volume leading to the computation of prices (AWAs and EWAs). This affects the volumetric calculation for sewerage as follows:

UR 12.1. The term \(MDVOL_{Ktd} \) is explicitly defined for a number of T17-meter chain/Trade Effluent pairs. Where \(MDVOL_{Ktd} \) is not explicitly defined, take \(MDVOL_{Ktd} = 0 \)

UR 12.2. Not used but retained for consistency with UR numbers in CP.

UR 12.3. Then define:
UR 12.4. Then, \(SDDV_{Kd} = DDV_{Kd} \times RTS_{Kd} \), normally; and

\[
SDDV_{Kd} = \frac{(1-VAC_d) \times (1-TDISC_d) \times SMC_{Kd}}{DIY} \sum_{(\text{Active } T \text{ associated with } K \text{ for which } NDASPLIT_{Td}>0)}^{NDATd} \frac{NDA_{Td}}{NDASPLIT_{Td}}
\]

UR 12.5.

when

\[
\sum_{(\text{Active } T \text{ associated with } K \text{ for which } NDASPLIT_{Td}>0)}^{NDATd} \frac{NDA_{Td}}{NDASPLIT_{Td}} > 0
\]

UR 13. Partial Treatment

UR 13.1. There is a requirement for certain elements of the Trade Effluent charge calculation to be dis-applied where a Discharge Point is subject to partial treatment. By default, Discharge Points receive Secondary Treatment.

UR 13.2. New internal variables will be introduced as follows:
- Preliminary Treatment Indicator (PTI);
- Biological Treatment Indicator (BTI); and
- Sewage Sludge Indicator (SSI).

UR 13.3. For settlement runs with start dates before the configurable date (as described in UR 17), the values of PTI, BTI and SSI will all be set to 1 (equivalent to ‘Secondary Treatment’), irrespective of the value of the TE Treatment indicator. For settlement runs with start dates on or after the configurable date, these variables will be set as follows:

UR 13.3.1. Where TE Treatment is set to “Sub-primary”, PTI, SSI and BTI will be set to zero;

UR 13.3.2. Where TE Treatment is set to “Secondary”, PTI, BTI and SSI will all be set to 1;

UR 13.3.3. Where TE Treatment is set to “Primary”, PTI will be equal to 1, SSI will be equal to 2/3 (to full decimal precision arithmetic in the Central Systems) and BTI will be equal to zero.

UR 13.4. The variables PTI, SSI and BTI will be used in the calculations for TE charges as follows:

UR 13.4.1. PTI will be an additional multiplier of the Va and Vo parameters in the charging formula for Trade Effluent

UR 13.4.2. BTI will be an additional multiplier of the Ba and Bo parameters in the charging formula for Trade Effluent

UR 13.4.3. SSI will be an additional multiplier of the Sa and So parameters in the charging formula

UR 13.4.4. These will be applied to both the availability charge and the operating charge, as Daily Availability Charge (compare CSD0206, section 2.2.2)

\[
ACc = [(CDV \times (Ra + PTI \times Va)) + (BTI \times Ba \times sBODI) + (SSI \times Sa \times TSSI)] \times SF \times (1 - VAC_d)
\]

Daily Operating Charge (compare CSD0206, section 2.2.2)
\[OPc = DAVD \times (Ro + PTI \times Vo + (BTI \times Bo \times (Ot / Os)) + (SSI \times So \times (St / Ss))) \]

where the inserted variables are marked in red for clarity.

UR 14. The new terms introduced above should be added to the Market Dataset

UR 14.1. Meter Treatment should be added to the X33Meter: Meters report

UR 14.2. PcentAllowance, FixedAllowance and TETreatment should be added to the X34DPID: DPIDs report

UR 15. Validation for the T023.0 (Notify Meter Association). The current validation for this transaction should be replaced with the following validations to be undertaken in the order given:

UR 15.1. The sender must be SW. If this is not the case, the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DL.

UR 15.2. The Effective From Date of the transaction must be prior to or equal to the transaction date (for all of this UR 15, transaction date should be taken to be the date of receipt by the HVI on the CS). If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DK.

UR 15.3. SPID checks.

UR 15.3.1. The submitted SPID must exist in the CS. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code AC.

UR 15.3.2. The submitted SPID must be a sewerage SPID. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code ED.

UR 15.3.3. The submitted SPID must not be disconnected or de-registered (i.e. there must be no disconnection date for the SPID). If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code EJ.

UR 15.4. DPID checks.

UR 15.4.1. The submitted DPID must exist in the CS. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DR.

UR 15.4.2. The submitted DPID must be associated with a TE service element on the submitted sewerage SPID. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DO.

UR 15.4.3. The submitted DPID must not be discontinued. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DN.

UR 15.4.4. The DPID must have been effective from on or before the Effective From Date of the T23.0. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DN.

UR 15.5. Meter checks.

UR 15.5.1. The submitted meter must exist in the CS. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code EY.

UR 15.5.2. The submitted meter must not have been swapped out or de-registered. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code FP.

UR 15.5.3. The meter must have been effective from on or before the Effective From Date of
the T23.0. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code FP.

UR 15.5.4. The meter must be associated with the associated water SPID of the submitted sewerage SPID. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code HS.

UR 15.5.5. If the meter is an SWWater meter, or a PrivateWater meter, the RTS for that meter must be greater than zero. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code HU.

UR 15.6. Meter – DPID association checks.

UR 15.6.1. The Effective From Date of the T023.0 must be on or after the effective from dates of any previous association between the submitted meter and DPID. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DF.

UR 15.6.2. The MDVol in the T023.0 cannot overwrite a current MDVol. If a current MDVol exists, the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code HT.

UR 15.7. Not used, but retained for consistency with previous CURs.

UR 15.8. Otherwise, establish the meter-DPID relationship in the CS and issue a T023.1 (Meter Association Notification) to any Trading Parties identified by the Notification Helper, in accordance with the following criteria:

- Wholesaler to LP - Y
- LP to Wholesaler - N
- Reflexive - N
- Associated SS LP - N
- Associated WS LP - N
- Incoming LP – N

UR 16. Validation for the T024.0 (Notify Meter De-association). The current validation for this transaction should be replaced with the following validations to be undertaken in the order given:

UR 16.1. The sender must be SW. If this is not the case, the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with a suitable error code.

UR 16.2. The Effective From Date of the transaction must be prior to or equal to the transaction date (for all of this UR 16, this should be taken to be the date of receipt by the HVI on the CS). If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with a suitable error code.

UR 16.3. SPIID checks.

UR 16.3.1. The submitted SPIID must exist in the CS. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code AC.

UR 16.3.2. The submitted SPIID must be a sewerage SPIID. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code ED.

UR 16.4. DPID checks.

UR 16.4.1. The submitted DPID must exist in the CS. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DR.

UR 16.4.2. The submitted DPID must be associated with a TE service element on the submitted sewerage SPIID. If this is not the case, then the transaction should be
rejected and a T009 sent (using the T9 Helper) to SW with error code DO.

UR 16.5. Meter checks.

UR 16.5.1. The submitted meter must exist in the CS. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code EY.

UR 16.5.2. The meter must be associated with the associated water SPID of the submitted sewerage SPID. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code HS.

UR 16.6.1. An association must exist between the submitted DPID and submitted meter, in the CS. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DP.

UR 16.6.2. The Effective From Date of the T024.0 must be on or after the effective from date of the most recent association between the submitted meter and DPID. If this is not the case, then the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DF.

UR 16.6.3. The most recent association between the submitted meter and DPID must be active on the effective from date of the T024.0. If this is not the case, the transaction should be rejected and a T009 sent (using the T9 Helper) to SW with error code DP.

UR 16.7. Not used but UR retained for consistency of UR numbers with previous versions of the CURs.

UR 16.8. Otherwise, deregister the meter-DPID association in the CS and issue a T024.1 (Meter Association Notification) to any Trading Parties identified by the Notification Helper, in accordance with the following criteria;

- Wholesaler to LP - Y
- LP to Wholesaler - N
- Reflexive - N
- Associated SS LP - N
- Associated WS LP - N
- Incoming LP – N

UR 17. Clear down all current meter-DPID associations from the CS and set the configurable date for activating the MCCP 095 arrangements to 2014-04-01. Following the submission of revised meter-DPID associations by SW, expected to be in April 2013 and after the May P1 settlement run, this configurable date should be set back to 2013-04-01.

UR 18. Data Flow Changes (Addendum): On the T021.0, the TE YVe (D6002) should be optional (it is currently mandatory), with a default of zero if not completed in any T021 submission. This change allows SW to submit YVe’s for historic purposes, but recognises that YVe becomes redundant once these arrangements are implemented. This parameter should also be moved to the bottom part of the T21.0 LVI screen.